
mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

mikro - Introducing a C++ Mikro Kernel

Victor Apercé & Julien Freche

viaxxx@lse.epita.fr
julien.freche@lse.epita.fr
http://lse.epita.fr/

http://lse.epita.fr/

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Outline I

1 Introduction

2 Kernel types
Introduction to kernel
Monolithic/Micro kernel explained
Monolithic/Micro kernel comparison

3 mikro

4 Low level C++

5 Design considerations

6 Features and progress
Implemented features
Missing features

7 Conclusion

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Introduction

Introduction

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

mikro id

Kernel type: micro kernel

Status: experimental now but intended to be in production
(if we can :D)

Language: C++

Fathers: Victor Apercé, Julien Freche

Birth: in early September 2013

Place of birth: LSE, near Paris, France

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Some figures about mikro

The most active project of the LSE this year

2 repositories: kernel and User land

2 main authors and 2 contributors

~900 commits representing 5.2 commits per day

~27,000 lines

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Kernel types

Kernel types

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Introduction to kernel

Introduction to kernel

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Kernel land/User land

Kernel land
Code running at a privileged level of the CPU

Bugs are most of the time fatal

User land
Tasks running at a low privileged level

Bugs can be recovered by Kernel land

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Kernel

Kernel
Interface between software and hardware

A part is running in Kernel land but not necessary all

Core of the operating system

2 main types: monolithic and micro kernel

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Main component of Kernel

Main components of kernel are:

Paging (will be discussed in an other talk)

VFS: Virtual File System

Binary loader

Scheduler

Processor init (will be discussed in an other talk)

Drivers

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Monolithic/Micro kernel explained

Monolithic/Micro kernel explained

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Monolithic kernel

Monolithic kernel
Almost everything privileged is in Kernel land

Availability of dynamic module loading - most of the time

Very big

System functionality access: through system calls

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Micro kernel

Micro kernel
The less as possible resides in Kernel land

No dynamic module loading

Very light

Kernel components are User land processes: services

System functionality access: through IPC

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

IPC

Inter Process Communication
Communication between 2 User land processes

Message passing in micro kernels

Will be discussed in an other talk

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Component location

Components Micro kernel Monolithic kernel
Paging Kernel & User

Kernel land

VFS User
Binary Loader User
Scheduler Kernel or User
Processor Init Kernel
Drivers User

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Examples

Monolithic kernels
Windows (hybrid :D)

Darwin, MacOS X kernel (hybrid :D)

Linux

*BSD

STOS

Micro kernels
QNX

Mach

L4 family, the reference

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Monolithic/Micro kernel comparison

Monolithic/Micro kernel comparison

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Complexity

Monolithic kernel
Very complex

Hard to maintain

Kernel must be reentrant

Micro kernel
Kernel land is simple

User land is hard to design and complex

Supposed to be easier to maintain

Kernel don’t need to be reentrant

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Security

Monolithic kernel
Kernel land is big so many possible bugs

Possibility to exploit dynamic code loading in Kernel land

Bugs are most of the time fatal

Micro kernel
Kernel land is simple so less possible bugs

Bugs in User land are not fatal

Still possible exploits in User land services

Security can be mathematically proved like seL4

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Performance

Monolithic kernel
Very fast due to system calls

Micro kernel
Slower because of IPC context switches

IPC must be as fast as possible to improve performance

This problem hasn’t been really solved yet

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types
Introduction to kernel

Monolithic/Micro kernel
explained

Monolithic/Micro kernel
comparison

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Knowledge background

Monolithic kernel
First kernels

Design used a lot

Less fun, recipe already exists

Micro kernel
Rare design

Still researches on the topic

But let room to innovations!

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

mikro

mikro

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Why’s mikro a micro kernel?

More challenging

Pretty fan of the micro kernel idea

More fun because there’s no recipe

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

What makes mikro different?

Not a L4 clone but inspired from L4

We want it to be as fast as we can

IPC will be different from other micro kernel (see other
talk)

mikro code has been designed to be "one day" in production
Developed with newer technologies:

clang is the default compiler
C++ is the official language of mikro

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Low level C++

Low level C++

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

C- - ?

Common question:
Is it possible to code a kernel in C++ ?

Answer:
Yes, it is, but you will have to drop some features:

RTTI: Run-Time Type Information

STL: Standard Template Library

Local static variables

Global objects

New and delete operators

...

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Who am I anyway ?

RTTI
C++ mechanism that gives informations about an object’s data
type at runtime.

This is useful for dynamic_cast<> and typeid operators.

Used when handling exceptions.

Virtual functions work without RTTI (using vtables).

You can port a C++ RunTime lib and an Unwind lib to restore
these features.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Template Paradise

STL
Library that provides generic templated classes and associated
algorithms.

Depends on the libc

No stream operators

Some of the containers may be usable if extracted from the
lib.

You can port libstdc++, STLPort or uSTL for example to restore
these features.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Guards, protect me !

Local static variables
These variables are declared as static inside a function and are
preserved across different calls.

The compiler will generate a code that will looks like:

__guard gua rd ;

i f (! ((char ∗)& guard) [0])
i f (_ _ c x a _ g u a r d _ a c q u i r e (& guard))
{

/ / E f f e c t i v e v a r i a b l e i n i t
_ _ c x a _ g u a r d _ r e l e a s e (& guard) ;

}

This code is, of course, simpler that the real generated code.
You can code __cxa_guard_* to support this feature.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Init me

Constructor of global objects have to be called before entering
the C++ entry point. You can do it with the following:

mov $ s t a r t _ c t o r s , %ebx
jmp 2 f

1 :
c a l l ∗(%ebx)
add $4 , %ebx

2 :
cmp $ e n d _ c t o r s , %ebx
jb 1b

c a l l k_main

The symbols start_ctors and end_ctors are generated by the
compiler. You can call destructors with a similar code.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

No throw, please !

You will have to code new and delete operators by yourself. The
usual new operator will throw an exception on error but you
probably don’t want that.

void ∗ operator new (s i z e _ t s i z e) n o e x c e p t ;
void operator d e l e t e (void ∗p) ;

The new operator will have to call your kernel internal
allocator.

Do not forget to check the return value.

Do not use new in a constructor, you cannot check the
return value.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Design considerations

Design considerations

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Pick one

How to separate generic code from arch-specific code ?

Using inheritance ?

Using templates ?

Using macro ?

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Not so good..

Inheritance

Parent Class: arch generic

Inherited Class: arch specific

Considerations:

First naive idea

You can change program behavior at run-time. Useless
here.

Overhead due to vtables and pointer manipulation.

Pay attention to not compile useless code.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Not so bad..

Macro

Macro name: arch generic

Expanded name: arch specific

Considerations:

Less readable. You have to find the macro definition to
understand.

C style.

Pretty powerful.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

First try

Templates

Base template: arch generic

Specialized template: arch specific

Considerations:

Some code has to be in the header file.

Specialized templates do not receive methods from the base
template.

You cannot easily write an arch generic interface...

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Hybrid

The solution implemented in mikro is hybrid and inspired by the
PIMPL design pattern.

c l a s s MemoryManager
{

p u b l i c :
i n l i n e void i n i t ()
{

a r c h . i n i t () ;
}

MemoryManagerImpl<ARCH_GENERIC> a r c h ;
} ;

This solution is not perfect but it works and can also be used for
other things like changing scheduler at compile time.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Features and progress

Features and progress

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Implemented features

Implemented features

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Awesome

Kernel:

Paging

SMP

IPC

vm86

Userland:

minimal libc

mikro lib

vesa

Bootloader:

module loading

ext2 support

configuration file

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Of course it works !

Tested on:

qemu

bochs

VirtualBox

Real hardware

You can easily create a USB stick with mikro and test it on your
hardware.

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Missing features

Missing features

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Not my fault

Kernel:

Support x86_64 and armv7

Better scheduler

Time management

Improve IPC

Probably a lot of bugs to fix

Userland:

VFS

Paging daemon

Process creation in userland

Drivers

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress
Implemented features

Missing features

Conclusion

Let’s dream

Other features we want to add if we can:

Linux compatible driver API

Metadata oriented file system "datameat" port on mikro

Unix program ports

And much more...

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Conclusion

Conclusion

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Almost done

mikro

highly active project

very fun to code !

a good way to learn new stuff

not usable yet but mainly because of the userland

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

I want YOU!

You can contribute to the project.

Main page:
http://www.lse.epita.fr/projects/mikro.html

Kernel repo (lse):
http://git.lse.epita.fr/?p=mikro.git

Kernel repo (bb):
http://bitbucket.org/mikroteam/mikro

Userland repo (lse): http:
//git.lse.epita.fr/?p=mikro-userland.git

Userland repo (bb): http:
//bitbucket.org/mikroteam/mikro-userland

http://www.lse.epita.fr/projects/mikro.html
http://git.lse.epita.fr/?p=mikro.git
http://bitbucket.org/mikroteam/mikro
http://git.lse.epita.fr/?p=mikro-userland.git
http://git.lse.epita.fr/?p=mikro-userland.git
http://bitbucket.org/mikroteam/mikro-userland
http://bitbucket.org/mikroteam/mikro-userland

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

Contacts

Julien Freche

julien.freche@lse.epita.fr

@JulienFreche

Victor Apercé

viaxxx@lse.epita.fr

Mailing List:

mikro@lse.epita.fr

Feel free to contact us if you have any questions about the
project. We will be happy to answer.

mailto:julien.freche@lse.epita.fr
mailto:viaxxx@lse.epita.fr
mailto:mikro@lse.epita.fr

mikro - Introducing
a C++ Mikro Kernel

Victor Apercé &
Julien Freche

Introduction

Kernel types

mikro

Low level C++

Design
considerations

Features and
progress

Conclusion

The end

Thank you for your attention

	Introduction
	Kernel types
	Introduction to kernel
	Monolithic/Micro kernel explained
	Monolithic/Micro kernel comparison

	mikro
	Low level C++
	Design considerations
	Features and progress
	Implemented features
	Missing features

	Conclusion

